by S. Hurand, A. Jouan, E. Lesne, G. Singh, C. Feuillet-Palma, M. Bibes, A. Barthélémy, J. Lesueur, and N. Bergeal
In this article, we show that the two-dimensional electron gas formed at the LaAlO3/SrTiO3 interface behaves as a Josephson junction array. In particular, it exhibits a stochastic switching of the superconducting critical current, which qualitatively follows the dynamics of the resistively and capacitively shunted Josephson junction model. The switching current distribution (SCD) has been measured as a function of temperature and backdate voltage. At low temperatures a clear saturation of the standard deviation of the SCD is observed, possibly indicating the presence of a macroscopic quantum tunneling regime with phase diffusion. Through the gate voltage we modify the damping of the array and compare it to artificial arrays of junctions.