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Multiple quantum criticality in a two-dimensional
superconductor
J. Biscaras1, N. Bergeal1, S. Hurand1, C. Feuillet-Palma1, A. Rastogi2, R. C. Budhani2,3, M. Grilli4,
S. Caprara4 and J. Lesueur1*

The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include,
among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the
focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum
many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated
superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+ 1)D XY
model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG
and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence
in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating
the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals.
Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or
dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of
the puddles.

Two-dimensional electron gases at the interface between
insulating oxides have raised considerable interest1–3. Indeed,
they exhibit very high mobilities suitable for applications4,

but also a rich phase diagram, with different quantum ground
states such as magnetism5–8 or superconductivity9,10 for example.
Moreover, these properties can be finely tuned using a gate
voltage11,12. Therefore, 2DEGs at oxide interfaces are interesting
systems to study quantum phase transitions (QPTs) that occur
between different quantum states, when a parameter in the
Hamiltonian crosses over a critical value13. The critical behaviour
of the observables belongs to universality classes that depend on
general properties of the system such as its dimensionality or its
symmetries, and not on the microscopic details. The associated
critical exponents obey specific rules, among which the so-
called Harris criterion, which stipulates that the correlation-length
exponent ν must satisfy ν≥2/d for dirty disordered systems, where
d is the spatial dimensionality14.

An important example of a QPT is the transition from a
superconducting to an insulating state in two dimensions, which
has been a matter of debate for a long time. Numerous experiments
with contrasting results have been performed, and a large variety
of critical exponents have been found15. The nature of the
non-superconducting state (metallic, insulator, localizing) and
the role of the disorder are still unclear. The possibility that
inhomogeneities spontaneously develop near the transition is a key
issue to understanding the low-temperature phase diagram of these
systems16–20, which may include multiple phase transitions. This is
the issue we address in this Article.

Here we show that a perpendicular magnetic field applied to
the superconducting 2DEG at the LaTiO3/SrTiO3 interface drives
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the system towards a weakly localizing metal. We evidence two
critical behaviours corresponding to the dirty and clean limits of the
Harris criterion,which can be controlled by the gate voltage. Indeed,
finite-size scaling (FSS) analysis reveals that depending on the gate
voltage and the temperature, the product of the critical exponents
zν is 2/3 in some region of the phase diagram (z is the dynamical
exponent), corresponding to the (2+1)D XY universality class in
the clean regime13, and greater than 1 otherwise, as expected from
the Harris criterion. We argue that these transitions correspond
to the destruction of superconductivity by phase fluctuations in a
disordered array of superconducting puddles coupled by a 2DEG.
We propose a new phase diagram where intra- and inter-puddle
physics come into play, and can be differently affected by two
magnetic fields BX and BC ruling the phase decoherence inside
or between the superconducting puddles respectively. We also
provide quantitative evidence that the key parameter is the 2DEG
conductance (as proposed in ref. 17), which determines whether the
puddles can individually become superconducting (in this caseBX<

BC) or not. In the latter case, superconductivity arises only from the
puddle interplay and from their formation of a superconducting
array, with BX = BC. This result demonstrates that the tunability
of the superconducting 2DEG at the oxide interface is a powerful
tool to study fundamental properties of superconductors in low
dimensions. We anticipate that further insight into QPTs involving
two-dimensional (2D) superconductors will emerge. For example,
the role of disorder and inhomogeneity17,21–23, Coulomb repulsion,
charge fluctuations and screening on the QPTs (refs 24,25) can be
explored in more detail.

The LaTiO3/SrTiO3 epitaxial interface exhibits a superconduct-
ing high-mobility 2DEG (ref. 10).We recently showed thatTc can be
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Figure 1 | Superconductor–insulator transition induced by a magnetic field. a, Sheet resistance RS as a function of temperature for different magnetic
fields from 0 to 0.3 T. Inset: Tc and GS= 1/RS as a function of the gate voltage VG. b, Zoom on the same data showing the characteristic magnetic field BX,
for which RS is constant between 0.12 and 0.22 K. c, Zoom on the same data showing the characteristic magnetic field BC, which separates the two regimes
at the lowest temperatures.

tuned by electrostatic gating from its maximum value of ∼200mK
to 0, and that superconductivity coincides with the presence of
highly mobile carriers (HMCs) at the edge of the quantum well
formed by the 2DEG at the interface12. It is therefore possible to
prepare the system with a given Tc by controlling the gate voltage
VG (Fig. 1a, inset), and to study how the superconducting state
is destroyed by a perpendicular magnetic field in this situation.
Samples are grown by pulsed laser deposition of 15 unit cells of
LaTiO3 on TiO2-terminated (001) SrTiO3 substrate (see ref. 10
for details). A metallic back gate is evaporated at the rear of the
500-µm-thick SrTiO3 substrate and connected to a voltage source
(VG). Standard four-probe resistance measurements are made with
a current sufficiently low to avoid any heating of the electrons
at the lowest temperature. The polarization scheme described
previously26 is applied to ensure a reversible behaviour of the
superconducting 2DEG.

The normal state exhibits the logarithmic temperature depen-
dence of the conductivity characteristic of weak localization in
two dimensions10. Magnetoresistance measurements beyond the
superconducting critical field or above Tc can be analysed within
the framework of the standard localization theory27 for the whole
range of parameters (magnetic field, temperature and gate volt-
age) used in this study28. Hence, the magnetic field turns the
2D superconductor into a 2D weakly localizing metal as shown
in Fig. 1a for VG = +80V, where the resistance per square RS
is plotted as a function of temperature T for different perpen-
dicular magnetic fields B. A close-up view of the data reveals a
critical field BX that separates the two regimes, and for which

RS is constant (Fig. 1b). The same set of data plotted as RS
versus B for different temperatures in Fig. 2a exhibits a cross-
ing point (RX = 372.4��−1, BX = 0.185 T) where the resistivity
does not depend on temperature. This is a first signature of
a continuous QPT.

In such zero-temperature transitions, the ground state of
the Hamiltonian is changed by an external parameter, such
as the magnetic field for instance. Close to the transition the
correlation length ξ in the space dimensions and the dynamical
correlation length ξτ in the imaginary time dimension of the
quantum fluctuations diverge with a power-law dependence of
the distance from the transition δ = (B − BX) (refs 13,15). At
T = 0 the correlation-length exponent ν defined as ξ ∝ |δ|−ν
and the dynamical scaling exponent z defined as ξτ ∝ ξ z are
believed to be independent of the microscopic details of the
transition and depend on only a few properties of the system,
such as the dimensionality and the range of the interactions,
which define universality classes for the QPTs (ref. 13). The
effective dimensionality of the system is d + z , where d is the
spatial dimensionality. At finite temperature, the imaginary time
dimension is limited by the temperature fluctuations so that the
dimensionality of the system is d+ z only at T = 0, and d at finite
temperature15. More precisely, the finite temperature limits the size
of the temporal direction by the thermal cutoff Lτ = h̄/kBT , which
is now an upper bound for the dynamical correlation length ξτ
near the critical point. It follows that in the spatial dimensions the
quantum fluctuations lose phase coherence over a temperature-
dependent dephasing length LΦ ∝ 1/T 1/z (ref. 13). This leads to
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Figure 2 | FSS analysis for VG=+80 V. a, Sheet resistance RS as a function of magnetic field B for different temperatures from 0.1 to 0.2 K. The crossing
point is (BX=0.185 T, RX= 372.4��−1). b, FSS plot of RS/RX as a function of |B−BX|t (see text for the definition of t). Inset: temperature behaviour of the
scaling parameter t. The power-law fit gives zν=0.66. c, RS as a function of B for different temperatures from 0.04 to 0.07 K. The crossing point is
(BC=0.235 T, RC= 376.6��−1). d, FSS plot of RS/RC as a function of |B−BC|t. Inset: temperature behaviour of the scaling parameter t. The power-law fit
gives zν= 1.5.

a so-called FSS of the observables of the system. For instance, the
resistance takes the form:

RS

RX
= F

(
B−BX

T 1/zν

)
where F is an arbitrary function with F(0)=1 (ref. 29).

The critical exponents can then be retrieved by a scaling proce-
dure as follows15. The resistance is rewritten as RS(δ,t )=RXF(δt ),
with t being an unknown parameter that depends only on T .
The parameter t is then found at each temperature T by opti-
mizing the collapse around the critical point between the curve
RS(δ, t (T )) at temperature T and the curve RS(δ, t (T0)) at the
lowest temperature considered T0, with t (T0) = 1. The depen-
dence of t with temperature should be a power law of the form
t = (T/T0)−1/zν to have a physical sense, thus giving the critical
exponent product zν. The interest of this procedure is to perform
the scaling without knowing the critical exponent beforehand. The
result of this procedure applied to the data in Fig. 1a shows that
data collapse onto a single (bi-valued) curve in Fig. 2b, and yields
zν= 0.66 (Fig. 2b, inset).

In the literature, zν = 2/3 has been observed for transitions
driven by a perpendicular magnetic field in conventional 2D
disordered superconductors such as a-NbSi (refs 30,31) or a-
bismuth15,32. The exponent ν∼2/3 corresponds to the clean 3DXY

universality class according to series expansion calculations33,34 or
numerical simulations35,36. This also corresponds to a (2+1)D XY
for a 2D superconductor, where the extra dimension refers to the
imaginary time in the quantum transition, provided the dynamical
exponent z is set to 1 (refs 13,29). In that case, long-range
superconducting correlations are destroyed by quantum phase
fluctuations. In general, the dynamical exponent z is found to
be 1, corresponding to long-range Coulomb interaction between
charges13,29, as has been measured in a-MoGe for instance37. In the
absence of a specific screening or dissipation mechanism38, there is
no reason to invoke short-range interactions, whichwould set z 6=1,
but this remains to be experimentally proved. Therefore, if z = 1,
then ν=2/3, which means that ν≤2/d , with the spatial dimension
d = 2. According to the very general Harris criterion14, the system
is in the clean limit at the relevant scale for the transition, namely
the dephasing length LΦ . In 2D disordered systems, that is, in the
dirty regime, ν is expected to increase beyond 1 (ref. 36), following
theHarris criterion, as observed in a-MoGe (ref. 37), InOx (ref. 39),
ultrathin high-Tc superconductors40 or more recently in graphene–
metal hybrids41 for instance.

We now focus on the same RS versus T curves below 0.1 K
(VG=+80V). A close-up view in Fig. 1c evidences another critical
field BC for which the resistance is constant in a restricted range of
temperature and ∂R/∂T changes sign. Reported in Fig. 2c,RS versus
B curves exhibit a crossing point (BC= 0.235 T, RC= 376.6��−1),
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Figure 3 | FSS for VG=−15 V. a, Sheet resistance RS as a function of temperature for different magnetic fields from 0 to 0.2 T. Inset: corresponding RS as a
function of the magnetic field for different temperatures from 0.07 to 0.12 K. The crossing point is (BX=0.1 T, RX= 2,176��−1) . b, Temperature
behaviour of the scaling parameter t: two distinct slopes are evidenced, 0.64 at high temperature and 1.4 at low temperature. c, FSS plot of RS/RX as a
function of |B−BX|t corresponding to the high-temperature regime, with zν=0.64. d, FSS plot of RS/RC as a function of |B−BC|t corresponding to the
low-temperature regime, with zν= 1.4.

and the FSS analysis shows a good collapse of the curves, leading
to a critical exponent product zν ∼ 1.5 (Fig. 2d). This is clearly
greater than 1. The system is in the dirty limit of the Harris
criterion at the scale LΦ .

As a conclusion for VG =+80V, the system seems to exhibit a
clean critical behaviour (zν ∼ 2/3) that can be seen between 120
and 220mK, and a dirty one (zν ∼ 3/2) at lower temperature.
At first sight, this is contradictory because the finite-temperature
scaling behaviour of a QPT is expected to hold down to the lowest
temperatures. It was already noticed19,42 that FFS can be performed
in 2D superconductors under a magnetic field in a restricted
range of finite temperatures. These authors argued that this can be
understood if the low-temperature phase is inhomogeneous. We
will come back to this point later on.

When the gate voltage is tuned to lower or even negative
values, the system is driven towards a more resistive state, and
Tc decreases (Fig. 1a, inset). In Fig. 3a, RS is shown as a function
of the temperature for different magnetic fields and for a gate
voltage VG =−15V. A plateau is clearly seen down to the lowest
temperature for a critical field BX = 0.1 T (RX = 2176��−1), as
confirmed by the presence of a crossing point (Fig. 3a, inset). The
FSS analysis reveals that two regimes take place as shown in Fig. 3b.
Indeed, two distinct zν values can be extracted: at high temperature
(70–120mK) zν∼2/3 and at the lowest temperatures zν∼3/2. The

corresponding collapses of the data depicted in Fig. 3c,d confirm the
existence of the quantum critical behaviour.

We made the same analysis for all of the gate voltages between
VG=−40V and VG=+100V. The results are shown in Fig. 4. For
VG ≥+10V, two distinct critical fields BX and BC (BC > BX) can
be found (Fig. 4a, region II), whereas for VG ≤+10V, they merge
into a unique value (region I). Two important observations need to
be made: BX increases with VG and then saturates when BX 6= BC
to a value Bd; BC matches Tc defined as the temperature where
the normal-state resistance drops by 10% (ref. 12). BC is therefore
the critical field that fully destroys superconductivity in the system.
The critical exponent products zν extracted from the FSS analysis
around both critical fields are reported as a function ofVG in Fig. 4b.
zν corresponding to BX is constant and equals ∼2/3: the quantum
critical behaviour is in the (2+ 1)D XY clean limit. For BC, zν
changes with VG, with rather important error bars due to the finite
scaling range in temperature, but is always larger than 1, indicating
that the QPT is in the dirty limit.

To account for these observations, we propose the following
scenario based on the XY model where superconductivity is
destroyed by phase fluctuations in a 2D superconductor. We
suppose that the system consists of superconducting islands coupled
by non-superconducting metallic regions (see Fig. 5 for a sketch).
Indeed, as shown previously12, the superconducting 2DEG is made
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Regions I and II refers to the low, and respectively high, coupling regimes (see text). b, zν as a function of VG for the two transitions (when BX= BC, BC has
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function of GS on a log scale (G0= 356 µS is the conductance at VG=−45 V, where BC goes to 0). Dashed lines have slopes 1 and 1/4 respectively as
expected from the model of ref. 17.

of two types of carrier, a few HMCs and a majority of low
mobile carriers. We argued that the presence of HMCs triggers
superconductivity in the system. The density of HMCs (ref. 12;
in the 1012 cm−2 range) and its evolution with the gate voltage is
very similar to the superfluid density directly measured in ref. 43
in LaAlO3/SrTiO3 interfaces. We therefore assume that HMCs
form the superfluid with intrinsic inhomogeneity due to its very
low average density and the associated density fluctuations, and
that low mobile carriers form the metal that provides long-range
coupling. The system is therefore described as a disordered array of
superconducting puddles of size Ld coupled by a metallic 2DEG.
Such a situation has been studied previously17. Superconducting
phase coherence is governed by the transport properties of the
metallic part through the proximity effect, and depends on the
2DEG conductance G2DEG. If the coupling is strong enough (high
G2DEG), puddles can develop full local superconductivity and two
critical behaviours can be observed corresponding respectively to
the puddles themselves and to the disordered array of puddles.
In the opposite case (low G2DEG), decoupled puddles are always
in a fluctuating regime, and only the full array transition can be
seen at low temperature. These two regimes can be observed in
LaTiO3/SrTiO3 interfaces, and the transition from one to the other
can be controlled by the gate voltage. Indeed, the conductance
GS = 1/RS increases with VG (Fig. 1a, inset), and so does the
coupling. Region I is therefore the low coupling regime with
a single transition (BX = BC), whereas region II refers to the

high coupling one with two transitions (BC > BX). In the latter
case, BX is the critical field for the puddle transition and BC the
one for the whole array: as a consequence Tc scales with BC as
observed experimentally.

The model described in ref. 17 develops a full analysis of the
long-range coupling between puddles. It introduces the concept of
an optimal puddle17 to account for the statistical distribution of
puddle sizes, and shows that the criticalmagnetic fieldBC scales with
the coupling parameter G2DEG. At low conductance, BC ∝ G2DEG,
whereas at high conductance, BC ∝ G1/4

2DEG. To test the model in
more detail, we plotted the critical field BC as a function of the
conductance GS on a log-scale in Fig. 4c. The data are in good
agreement with the theory. Not only can the two regimes be clearly
identified, but also the values of the slopes correspond to the
calculated one. This is a strong indication that themodel of ref. 17 is
a good representation of the physics involved in these experiments.

On this basis, we can now analyse the QPT, remembering that
the thermal dephasing length behaves as LΦ ∼ T−1/z (z = 1 here).
A schematic illustrating the situation is shown in Fig. 5a. Let us
first focus on region II as defined in Fig. 4. At high temperature,
the phase dephasing length LΦ is smaller than the superconducting
puddle size Ld, and the intra-puddle physics dominates. The critical
field BX corresponds to the dephasing field Bd on a puddle of
size Ld (Bd ∼Φ0/L2d, where Φ0 is the flux quantum)17,18, and does
not depend on the microscopic parameters of the system tuned
by VG. This is why it is constant as a function of VG (BX = Bd)
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as shown in Fig. 4a. From the value of Bd, we can estimate Ld to
be of the order of 100 nm. As LΦ < Ld, the system is in the clean
limit, and zν ∼ 2/3< 1 (Fig. 4b). When lowering the temperature,
LΦ crosses Ld at Td, and the whole array undergoes the transition
with a critical field BC. In that case, phase fluctuations extend over
wide disordered regions and the dirty (2+1)D XY model applies
as expected from the Harris criterion (zν > 1 as shown in Fig. 4b).
In region I, only the array exhibits a transition with a single critical
field BC. However, as the temperature is lowered, LΦ also crosses Ld,
and we therefore observe a transition from a clean (zν = 2/3< 1)
to a dirty (zν > 1) (2+1)D XY limit. At this point, it is worthwhile
mentioning that, strictly speaking, the transition at BC is the only
trueQPT, because the scaling holds down to the lowest temperature.
However, at sufficiently high temperature, the transition at BX
exhibits fluctuations corresponding also to a real QPT that is never
reached. Indeed, the diverging dephasing length crosses Ld, which
acts as a cutoff length for the intra-puddle physics. BX is therefore a
crossover field17 marking the change of quantumcritical behaviour.

Such an analysis reveals that the tunable LaTiO3/SrTiO3 epitaxial
interface is a unique system to study the superconducting QPT in
two dimensions, which is well described by the (2+1)D XY model
as expected. The role of disorder on the critical exponents is clearly
evidenced, together with the possibility of observing multiple phase
transitions as previously proposed theoretically16–18.

Our study sheds light on the critical role of superfluid density
fluctuations and intrinsic inhomogeneities when approaching
the phase transition. A traditional view of the QPT in 2D
superconductors is based on the so-called fermionic scenario44,
where superconductivity disappears because Cooper pairs are
destroyed, as opposed to the dirty boson scenario29, where they
localize and form an insulator. In the latter case, phase fluctuations
dominate and the QPT takes place for critical resistances RC
close to the quantum resistance RQ = h/4e2 ' 6.5 k��−1 and
ν > 1. Experiments reveal that the situation is more complex15, in
particular when inhomogeneities play a role19. Ref. 39 compiled
experimental results in the literature and clearly evidenced two
behaviours: the QPT separates a superconducting phase from a
weakly localizing metal in the less disordered systems (RC ≤ RQ),
and from an insulator in strongly disordered materials (RC ∼ RQ).
Our data (0.04 ≤ (RC/RQ) ≤ 0.4) fully agree with this picture,

and the non-superconducting phase is indeed always a weakly
localizing metal. New theoretical scenarios emerged16–18 based on
superconducting puddles in a 2D metal, where phase fluctuations
play a crucial role (the XY model applies), compatible with critical
resistances lower than RQ, and leading to new phase diagrams. Our
results show the relevance of this approach. Moreover, we evidence
that the phase diagram is not universal, because it can be changed
by the gate voltage, as shown in Fig. 5b,c, which presents the B–T
phase diagrams corresponding to VG = +80V and VG = −15V,
respectively. In contrast, the critical exponent for high-temperature
scaling ν ∼ 2/3 always corresponds to the clean (2+ 1)D XY ,
showing that the transition is driven by phase fluctuations in a 2D
superconductor. The low-temperature value of ν is always greater
than 1, indicating that disorder ultimately controls the QPT. If
its value is close to zν = 3/2 in most of the phase diagram, the
limited range of temperature for the FFS analysis prevents one
from drawing strong conclusions. One cannot exclude that the
universality class refers to classical percolation (ν = 4/3) between
superconducting puddles. Quantum percolation (ν = 7/3) could
also take place in some part of the phase diagram (see ref. 39 for
a discussion on this point for example). More work is needed to
clarify this important point.

We have showed that the superconducting 2DEG at the
LaTiO3/SrTiO3 interface undergoes a QPT from a superconductor
to a weakly localizing metal on applying a perpendicular magnetic
field, driven by phase fluctuations and well described by the
(2+ 1)D XY model, as expected. By tuning the gate voltage, it
is possible to explore the clean and dirty regimes according to
the Harris criterion, with a critical exponents product zν = 2/3
in the former case, in agreement with previous evaluations in
the parent system LaAlO3/SrTiO3 (refs 11,45), and greater than 1
otherwise. The system is well described by a disordered array of
superconducting puddles coupled by a 2DEG, which can exhibit
two critical behaviours, one related to regional or local ordering,
and another one corresponding to long-range phase coherence, as
proposed theoretically16–18. The key parameter, that is, the coupling
constant (the 2DEG conductance), can be tuned at will to explore
the phase diagram of the system. This is important in the context
of recent studies of strongly disordered 2D superconductors where
intrinsic inhomogeneities appear at mesoscopic scales17,46,47, with
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coexistence of superconducting and non-superconducting regions.
Recent work on artificial ordered metallic networks addresses this
issue48, but does not reach the insulating state. Our study opens
the way for exploring the physics of disordered superconductors,
and beyond, the more general problem of phase coherence in
multiscale systems such as strongly correlated materials that are
phase-separated49 or spin-textured50.
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